Crystallography

- The unit cell
- Space groups
- Bragg's law
- The structure factor

Magnus H. Sørby
Institute for Energy Technology, Norway

Motivation

Single crystals

Powder

Some definitions

Crystal or crystalline solid: a solid material whose constituents, such as atoms, molecules or ions, are arranged in a highly ordered microscopic structure.

Polycrystalline
Polycrystalline materials (powder) are solids that are composed of many crystallites of varying size and orientation. Crystallites are also referred to as grains.

Amorphous solids: the atoms have no periodic structure whatsoever.

Amorphous

Wikipedia

Some definitions

Some definitions

Lattice points are points that have identical surroundings in the crystal structure.

The unit cell

The smallest unit ("box") that can be repeated in all directions to build up the crystal structure and shows the full symmetry of the crystal structure.

The unit cell

The smallest unit ("box") that can be repeated in all directions to build up the crystal structure and shows the full symmetry of the crystal structure.

Is this the unit cell?

The unit cell

The smallest unit ("box") that can be repeated in all directions to build up the crystal structure and shows the full symmetry of the crystal structure.

The unit cell

The smallest unit ("box") that can be repeated in all directions to build up the crystal structure and shows the full symmetry of the crystal structure.

Is the unit cell?

Yes! With «centered rectangular» symmetry

The unit cell

The smallest unit that can be repeated in all all directions to build up the crystal structure and shows the full symmetry of the crystal structure.

Unit cell dimensions: $\mathrm{a}, \mathrm{b}, \mathrm{c}$, angles: $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$ or defined by three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$

CUBIC
$\mathrm{a}=\mathrm{b}=\mathrm{c}$
$\alpha=\beta=\gamma=90^{\circ}$

TETRAGONAL
$a=b \neq c$
$\alpha=\beta=\gamma=90^{\circ}$

ORTHORHOMBIC
$a \neq b \neq c$
$\alpha=\beta=\gamma=90^{\circ}$
HEXAGONAL
$\mathrm{a}=\mathrm{b} \neq \mathrm{c}$
$\alpha=\beta=90^{\circ}$
$\gamma=120^{\circ}$

MONOCLINIC

$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$
$\alpha=\gamma=90^{\circ}$
$\beta \neq 120^{\circ}$

TRICLINIC
$a \neq b \neq c$
$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

4 types of unit cells
$\mathrm{P}=$ Primitive
I = Body-centered
F = Face-centered
C = Side-centered
$+$
7 crystal systems
$\rightarrow 14$ Bravais lattices

Space group

14 Bravais lattices + symmetry elements (centre of symmetry, rotation axes, mirror plane, glide planes, screw axes, inversion axes).

Space group

14 Bravais lattices + symmetry elements (centre of symmetry, rotation axes, mirror plane, glide planes, screw axes, inversion axes).

Space group

14 Bravais lattices + symmetry elements (centre of symmetry, rotation axes, mirror plane, glide planes, screw axes, inversion axes).

Space group

14 Bravais lattices + symmetry elements (centre of symmetry, rotation axes, mirror plane, glide planes, screw axes, inversion axes).

Up to 230 different ways to replicate a finite object in 3-dimensional space.

$\Rightarrow 230$ space groups

continued
No. 230
$\underset{\substack{\text { Symmetry operations } \\ \text { (give on page } 715)}}{\substack{\text { (} \\ \text {. }}}$
Generators selected $(1) ; t(1,0,0) ;(0,1,0) ;\left\{(0,0,1) ; t\left(\frac{1}{2}, \frac{1}{2}\right) ;(2) ;(3) ;(5) ;(13) ;(25)\right.$

Diffraction

- Laser at slits gives line of diffractions points
- Repeating units in three dimensions give rise to diffraction pattern
- Repeating units: Unit cells

Direction of diffracted beams: Laue's interference condition

- To get interference (assuming elastic scattering):

$$
\mathrm{AQ}-\mathrm{PB}=\mathrm{b}\left(\cos \psi_{2}-\cos \varphi_{2}\right)=\mathrm{m} \lambda \quad(\mathrm{~m}=\text { integer })
$$

- In 3D:

$$
\left.\begin{array}{l}
\mathrm{a}\left(\cos \psi_{1}-\cos \varphi_{1}\right)=h \lambda \\
\mathrm{~b}\left(\cos \psi_{2}-\cos \varphi_{2}\right)=k \lambda \\
\mathrm{c}\left(\cos \psi_{3}-\cos \varphi_{3}\right)=\lambda
\end{array}\right\} \text { Laue equations }
$$

Miller indices

The (hkl) plane makes intercepts $\mathbf{a} / h, \mathbf{b} / k$ and \mathbf{c} / l along the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes.
The direction [hkJ] is perpendicular to the (hkl) plane.
a,b,c: Unit cell dimensions

The (hkl) plane makes intercepts $\mathbf{a} / h, \mathbf{b} / k$ and \mathbf{c} / l along the x, y, z axes.
The direction [hkJ] is perpendicular to the (hkl) plane.
a,b,c: Unit cell dimensions

Miller indices

The (hkl) plane makes intercepts $\mathbf{a} / h, \mathbf{b} / k$ and \mathbf{c} / l along the x, y, z axes.
The direction [hkJ] is perpendicular to the (hkl) plane.
a,b,c: Unit cell dimensions

Bragg's law

$2 d_{h k} \sin \theta=\lambda$

Ex. Orthorhombic crystal system:

$$
\mathrm{d}_{\mathrm{hkl}}=\frac{1}{\sqrt{\left(\frac{\mathrm{~h}}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{k}}{\mathrm{~b}}\right)^{2}+\left(\frac{\mathrm{l}}{\mathrm{c}}\right)^{2}}}
$$

Cubic:

$$
\mathrm{d}_{\mathrm{hkl}}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}}
$$

Reciprocal space

Definitions:

$\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}:$ Reciprocal lattice vectors

$$
\mathbf{a}^{*}=\frac{2 \pi}{\mathrm{~V}_{c}}(\mathbf{b} x \mathbf{c}) ; \mathbf{b}^{*}=\frac{2 \pi}{\mathrm{~V}_{c}}(\mathbf{c} x \mathbf{a}) ; \mathbf{c}^{*}=\frac{2 \pi}{\mathrm{~V}_{c}}(\mathbf{a} x \mathbf{b})
$$

$\mathrm{V}_{c}=$ volume of the unit cell
\mathbf{a}^{*} perpendicular to the plane containing \mathbf{b} and \mathbf{c} \mathbf{b}^{*} perpendicular to plane containing \mathbf{a} and \mathbf{c} \mathbf{c}^{*} perpendicular to plane containing \mathbf{a} and \mathbf{b} $\mathbf{a}^{*} \cdot \mathbf{b}=\mathbf{a}^{*} \cdot \mathbf{c}=\mathbf{b}^{*} \cdot \mathbf{a}=\mathbf{b}^{*} \cdot \mathbf{c}=\mathbf{c}^{*} \cdot \mathbf{a}=\mathbf{c}^{*} \cdot \mathbf{b}=0$ $\mathbf{a}^{*} \cdot \mathbf{a}=\mathbf{b}^{*} \cdot \mathbf{b}=\mathbf{c}^{*} \cdot \mathbf{c}=1$

WHY BOTHER WITH THIS???

Real space vs. Reciprocal space

Real space

- hkl: Indices for set of planes
- a, b, \boldsymbol{c} : Vectors defining unit cell
- Reciprocal space
- $\mathbf{H}_{\mathrm{hkl}}=h \mathrm{a}^{*}+k \mathbf{b}^{*}+l c^{*}$
- hkl: Coordinates of points
- a*, b*, c*: Basal vectors in reciprocal lattice
- $\mathbf{H}_{h k l} \perp(h k l)$
- $\left|\mathbf{H}_{h k l}\right|=2 \pi / d_{h k l}$

$$
\begin{aligned}
& \text { Elastic scattering: } \\
& \left|k_{i}\right|=\left|\boldsymbol{k}_{f}\right|=2 \pi / \lambda \\
& \mathbf{Q} \equiv \mathbf{k}_{\mathbf{f}}-\mathbf{k}_{\mathbf{i}} \rightarrow|\mathbf{Q}|=4 \pi \sin (\theta) / \lambda
\end{aligned}
$$

New condition for constructive interference: $\mathbf{Q}=\mathbf{H}_{\mathrm{hkl}}$

Ewald's sphere construction

Parallel and monochromatic beam

Elastic scattering:

$$
\left|k_{i}\right|=\left|k_{f}\right|=2 \pi / \lambda
$$

$$
k_{f}=k_{i}+\mathbf{Q}
$$

$$
\sin \theta=(|\mathbf{Q}| / 2) /|\boldsymbol{k}|=\left(2 \pi / 2 d_{h k l}\right) /(2 \pi / \lambda)
$$

$$
\Rightarrow \operatorname{Bragg}\left(2 d_{h k l} \sin \theta=\lambda\right) \quad(|\mathbf{Q}|=4 \pi \sin \theta / \lambda)
$$

When reciprocal lattice point $h k l$ on Ewald's sphere \Rightarrow Bragg's law satisfied for the plane (hkl) and Bragg-scattering in that direction.

Diffraction patterns

- The reciprocal lattice can be measured
- The positions of the spots (for single crystals) or lines (for powders) are given from Bragg's law
- What about the intensities?

Scattering

$$
=\left(\vec{e}_{\mathrm{f}}-\overrightarrow{\mathrm{e}}_{\mathrm{i}}\right) \cdot \overrightarrow{\mathrm{r}}
$$

Phase difference $=\frac{2 \pi\left(\overrightarrow{\mathrm{e}}_{\mathrm{f}}-\overrightarrow{\mathrm{e}}_{\mathrm{i}}\right) \cdot \overrightarrow{\mathrm{r}}}{\lambda}$

Scattering

$$
=\left(\vec{e}_{\mathrm{f}}-\overrightarrow{\mathrm{e}}_{\mathrm{i}}\right) \cdot \overrightarrow{\mathrm{r}}
$$

$$
\begin{aligned}
\text { Phase difference } & =\frac{2 \pi\left(\overrightarrow{\mathrm{e}}_{\mathrm{f}}-\overrightarrow{\mathrm{e}}_{\mathrm{i}}\right) \cdot \overrightarrow{\mathrm{r}}}{\lambda} \\
& =\overrightarrow{\mathrm{Q}} \cdot \overrightarrow{\mathrm{r}}
\end{aligned}
$$

Scattering

Properties of $\overrightarrow{\mathrm{Q}}$

- \mathbf{Q} is perpendicular to the scattering plane

$$
-|\mathbf{Q}|=\frac{4 \pi \sin (\theta)}{\lambda}=\frac{2 \pi}{d}
$$

Scattering from ideal crystals

Scattering from ideal crystals

The reciprocal lattice

The structure factor

$$
\begin{aligned}
& F(\mathrm{Q})=\sum_{j} b_{j} \cdot e^{\mathrm{i} \overrightarrow{\mathrm{Q}} \cdot \bar{r}_{\mathrm{j}}} \\
& F_{h k l}=\sum_{\substack{\text { Unit } \\
\text { cell }}} b_{\mathrm{j}} \cdot e^{2 \pi \mathrm{i}\left(h \cdot \mathrm{x}_{\mathrm{j}}+k \cdot \mathrm{y}_{\mathrm{j}}+l \cdot \mathrm{z}_{\mathrm{j}}\right)}
\end{aligned}
$$

Neutrons: $b_{\mathrm{j}}=$ scattering length
X-rays: $\quad b_{\mathrm{j}}=f_{\mathrm{at}, \mathrm{j}}=$ atomic form factor

Intensity of scattered beams:

$$
\boldsymbol{I} \sim \mid \boldsymbol{F}^{2}
$$

Displacement factor (Debye Waller factor, temperature factor):

$$
T_{\mathrm{j}}=e^{-W_{\mathrm{j}}}, W_{\mathrm{j}}=8 \pi^{2}\left\langle u_{j}^{2}\right\rangle \frac{\sin ^{2} \theta}{\lambda^{2}}=1 / 2 \mathrm{Q}^{2}\left\langle u_{j}^{2}\right\rangle
$$

In total:

$$
F_{h k l}=\sum_{\substack{\text { Unit } \\ \text { cell }}} b_{\mathrm{j}} \cdot e^{2 \pi i\left(h \cdot \mathrm{x}_{\mathrm{j}}+k \cdot \mathrm{y}_{\mathrm{j}}+l \cdot \mathrm{z}_{\mathrm{j}}\right)} \cdot e^{-1 / 2 Q^{2}\left\langle u_{j}^{2}\right\rangle}
$$

Structure factor calculation
 (joint effort ©)

Task: Calculate the expression for the structure factor of bodv-centered cubic Fe.
$\begin{aligned} F_{\text {hul }} & =\sum_{j} b_{j} e^{2 \pi i\left(h \cdot x_{j}+k \cdot y_{j}+l \cdot z_{j}\right)} \\ & =b_{F e} e^{2 \pi i(h \cdot+h \cdot 0 \cdot l \cdot 0)}+b_{F} e^{2 \pi i\left(h \cdot / 2+k \cdot 1 / 2 \cdot l l l^{\prime} / 2\right)}\end{aligned}$

$-1, h+h+l=n$ (ork)

Fe in 000 and $1 / 21 / 21 / 2$

The phase problem

Definition

$$
F T[f(x)]=\tilde{f}(k)=\int f(x) e^{i k x} d x
$$

Inverse Fourier transform:

$$
F T^{-1}[\tilde{f}(k)]=\int \tilde{f}(k) e^{-i k x} d k
$$

The structure factor is the Fourier transformation of: - The density of atom cores (scattering lengths) for neutrons

- The electron density for X-rays

The phase problem

$$
\begin{aligned}
& \boldsymbol{F}_{h k l}=\left|\boldsymbol{F}_{h k \mid}\right| e^{\mathrm{i} \varphi_{h k l}} \\
& \boldsymbol{I}_{h k l} \propto\left|\boldsymbol{F}_{h k l}\right|^{2}
\end{aligned}
$$

- The nuclear density:

$$
\rho(x, y, z)=\tilde{F}_{h b l}=\frac{1}{V_{c}} \sum_{h} \sum_{\substack{\infty}}^{\infty} \sum_{l}\left|F_{b k l}\right| l^{i \varphi_{p u l}} e^{-2 \pi(h x+y+y+k)}
$$

- It is impossible to calculate $\rho(x, y, z)$ as inverse Fourier transformation of the structure factors as long as $\varphi_{h k l}$ are unknown

\Rightarrow The phase problem in crystallography

Methods to solve the phase problem

- Patterson function: Fourier transformation of $\left|F_{h k k}\right|^{2}$ without phases:

$$
P(u, v, w)=\frac{2}{V_{c}} \sum_{h} \sum_{\substack{k \\-\infty}}^{\infty} \sum_{k}\left|F_{h k l}\right|^{2} \cos 2 \pi(h u+k v+l w)
$$

Self-convolution. Peaks in the Patterson function represent a vector between two atoms; weighted by the product of their scattering power. Used to determine positions of strong scatterers.

- Direct methods: Uses statistic relations between observed intensities to guess on phases. Very efficient when scatterers are of similar strength and many independet structure factor amplitues are collected (single crystal)

Most important points

The condition for constructive interference (Bragg scattering) is given by Bragg's law

$$
\lambda=2 d_{h k} \sin \theta
$$

or the condition that the scattering vector \mathbf{Q} equals a resiprocal lattice vector: $\mathbf{Q}=\mathbf{Q}_{\mathbf{h k l}}$ (Laue condition)

Most important points

The scattered wave from a collection of atoms is descibed by the structure factor

$$
F(\vec{Q})=\sum_{j}^{N} b_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
$$

For atoms in an infinitely repeating lattice, $F(Q)$ is nonzero only when $\mathbf{Q}=\mathbf{Q}_{\mathrm{hkl}}$
$F\left(\vec{Q}_{h k l}\right)=\sum_{j}^{N} b_{j} e^{2 \pi\left(h x_{j}+k y_{j}+l z_{j}\right)}$
And of course: $\left.|\propto| \mathbf{F}\right|^{2}$

Power Neutron Diffraction

vs

Powder X-ray Diffraction

The glory of neutrons

- There is no systematic correlation between atomic number and the scattering length.
- Can get information about light and heavy elements simultaneously.

- The neutron interacts weakly with matter.
- The neutron has a magnetic moment.

Metal hydrides

- Materials that contain chemical bonding between metal- and hydrogen atoms.

Alanates

[^0]
Crystal structure of alanates

NaAlH_{4}
$\mathrm{Na}_{3} \mathrm{AlH}_{6}$
LiAlH_{4}
$\beta-\mathrm{LiAlH}_{4}$
$\mathrm{Li}_{3} \mathrm{AlH}_{6}$
KAlH_{4}
${\mathrm{Mg}\left(\mathrm{AlH}_{4}\right)_{2}}^{\mathrm{Sr}_{2} \mathrm{AlH}_{7}}$
BaAlH_{5}
$\mathrm{Ba}_{2} \mathrm{AlH}_{7}$
$\mathrm{Na}_{2} \mathrm{LiAlH}_{6}$
$\mathrm{~K}_{2} \mathrm{NaAlH}_{6}$
$\mathrm{LiMg}\left(\mathrm{AlH}_{4}\right)_{2}$
$\mathrm{LiMg} \mathrm{AlH}_{6}$
$\mathrm{Ca}\left(\mathrm{AlD}_{4}\right)_{2}$
CaAID

PUS - high resolution diffractometer

The JEEPII reactor

Crystal structure of alanates

NaAlH_{4}
$\mathrm{Na}_{3} \mathrm{AlH}_{6}$
LiAlH_{4}
$\beta-\mathrm{LiAlH}_{4}$
$\mathrm{Li}_{3} \mathrm{AlH}_{6}$
KAlH_{4}
$\mathrm{Mg}\left(\mathrm{AlH}_{4}\right)_{2}$
$\mathrm{Sr}_{2} \mathrm{AlH}_{7}$
BaAlH_{5}
$\mathrm{Ba}_{2} \mathrm{AlH}_{7}$
$\mathrm{Na}_{2} \mathrm{LiAlH}_{6}$
$\mathrm{K}_{2} \mathrm{NaAlH}_{6}$
$\operatorname{LiMg}\left(\mathrm{AlH}_{4}\right)_{2}$
$\mathrm{LiMgAlH}_{6}$
$\mathrm{Ca}\left(\mathrm{AID}_{4}\right)_{2}$
CaAlD_{5}

PUS - high resolution diffractometer

LiAlH_{4}

$\mathrm{Na}_{2} \mathrm{LiAlH}_{6}$
$\mathrm{LiMgAlH}_{6}$

SNBL/ESRF (Grenoble, France)

$\mathrm{K}_{2} \mathrm{NaAlH}_{6}$

The glory of neutrons

- There is no systematic correlation between atomic number and the scattering length.
- Can get information about light and heavy elements simultaneously.

- Can distinguish neighboring elements in the periodic table.
The neutron interacts weakly with matter.
- The neutron has a magnetic moment.

Alloys

$\beta-\mathrm{Mn}:$ Cubic, complex structure, $\mathrm{a}=6.31 \AA$, $Z=20$

What happens when 40% of the Mn is substituted with Co?

Alloys

$\beta-\mathrm{Mn}:$ Cubic, complex structure, $\mathrm{a}=6.31 \AA$,

$$
Z=20
$$

$\left[\mathrm{Mn}_{0.6} \mathrm{Co}_{0.4}\right](1)_{12}\left[\mathrm{Mn}_{0.6} \mathrm{Co}_{0.4}\right](2)_{8}$

What happens if 40\% of the Mn is substituted with Co?

Alloys

$\beta-\mathrm{Mn}:$ Cubic, complex structure, $\mathrm{a}=6.31 \AA$, $Z=20$

> What happens if 40% of the Mn is substituted with Co?

Alloys

Which model is right for $\mathrm{Mn}_{0.6} \mathrm{Co}_{0.4}$?

Alloys

Which model is right for $\mathrm{Mn}_{0.6} \mathrm{Co}_{0.4}$?

Alloys

Which model is right for $\mathrm{Mn}_{0.6} \mathrm{Co}_{0.4}$?

Co selectively occupy the 8 -fold position!
O. B. Karlsen, et al. J. Alloys Comp., 2009, 476 (2009) 9-13

The glory of neutrons

- There is no systematic correlation between atomic number and the scattering length.
- Can get information about light and heavy elements simultaneously.
- Can distinguish neighboring elements in the

X ray cross section
 periodic table.

- The neutron interacts weakly with matter.
- Complicated sample environment is possible.
- The neutron has a magnetic moment.

Penetration

Sample environment

- Neutrons can penetrate several millimeters of materials like aluminium and steel.

Sample container (Inconel super-alloy) rated to 3000 bar and $600^{\circ} \mathrm{C}$.

Sample environment

- Neutrons can penetrate several millimeters of materials like aluminium and steel.

Furnace

Cryostat

The glory of neutrons

- There is no systematic correlation between atomic number and the scattering length.
- Can get information about light and heavy elements simultaneously.
- Can distinguish neighboring elements in the

X ray cross section
 periodic table.

- The neutron interacts weakly with matter.
- Complicated sample environment is possible.
- Large samples can be studied.
- The neutron has a magnetic moment.

Study of large samples

- How did the machining of the hole influence the material?

Study of large samples

Study of large samples

3D residual stress-field can be mapped in a non-destructive way!

Loading a sample at the NRSF2 instrument at Oak
Ridge National Lab (US)

The glory of neutrons

- There is no systematic correlation between atomic number and the scattering length.
- Can get information about light and heavy elements simultaneously.
- Can distinguish neighboring elements in the

X ray cross section
 periodic table.

- The neutron interacts weakly with matter.
- Complicated sample environment is possible.
- Large samples can be studied.
- Easy interpreations of scattering intensities.
- The neutron has a magnetic moment.

Scattering intensity

$$
I=\left|F_{K}\right|^{2}=\left|\sum_{i} b_{i} \cdot e^{i\left(\overrightarrow{r_{i}} \cdot \vec{Q}\right)}\right|^{2}=\left|\sum_{i} b_{j} \cdot e^{2 \pi i\left(h x_{j}+k y_{j}+l z_{j}\right)}\right|^{2}
$$

- Can (usually) neglect effects of multiple scattering and absorption.

The glory of neutrons

- There is no systematic correlation between atomic number and the scattering length.
- Can get information about light and heavy elements simultaneously.
- Can distinguish neighboring elements in the

X ray cross section
 periodic table.

- The neutron interacts weakly with matter.
- Complicated sample environment is possible.
- Large samples can be studied.
- Easy interpreations of scattering intensities.
- The neutron has a magnetic moment.
- Can study magnetic ordering.

Magnetic neutron scattering

- The neutron has a magnetic moment.
- This will interact with the magnetic moment of atoms with unpaired electrons.

$$
\begin{aligned}
& \vec{F}_{\text {magnetichkl }}=\sum_{i} \vec{m}_{i} f_{i} \cdot e^{2 \pi i\left(h x_{i}+k y_{i}+l z_{i}\right)} \\
& \vec{m}=\vec{K}(\vec{K} \cdot \vec{M})-\vec{M}, \quad|\vec{m}|=\sin \alpha \\
& |\vec{m}|=0, \quad \vec{K} \| \vec{M} \\
& |\vec{m}|=1, \quad I_{h k l} \propto\left|F_{h k l}\right|^{2}=\left|F_{n u c l, h k l}\right|^{2}+\left|F_{\text {magnetichkl }}\right|^{2}
\end{aligned}
$$

Magnetic neutron scattering

Magnetic neutron scattering

Ferromagnetic

Magnetic neutron scattering

Ferromagnetic

Magnetic neutron scattering

Antiferromagnetic

Magnetic neutron scattering

Antiferromagnetic

Magnetic neutron scattering

Antiferromagnetic

Conclusion

Powder neutron diffraction has some major differences from powder X-ray diffraction:

- Different contrast
- Information about light and heavy elements at the same time.
- Often good contrast from elements with similar atomic number.
- Weak interactions
- Scattering from bulk
- Easy interpreation of intensities
- Magnetic scattering

[^0]: B. Bogdanovic, J. Alloys Comp. 253-254 (1997) 1-9.

